The ATP-Sensitive K+ Channel ABCC8 S1369A Type 2 Diabetes Risk Variant Increases MgATPase Activity

نویسندگان

  • Mohammad Fatehi
  • Mobeen Raja
  • Christian Carter
  • Daniel Soliman
  • Andrew Holt
  • Peter E. Light
چکیده

Pancreatic β-cell ATP-sensitive K(+) (K(ATP)) channels are composed of Kir6.2 and SUR1 subunits encoded by the KCNJ11 and ABCC8 genes, respectively. Although rare monogenic activating mutations in these genes cause overt neonatal diabetes, the common variants E23K (KCNJ11) and S1369A (ABCC8) form a tightly heritable haplotype that is associated with an increased susceptibility to type 2 diabetes (T2D) risk. However, the molecular mechanism(s) underlying this risk remain to be elucidated. A homology model of the SUR1 nucleotide-binding domains (NBDs) indicates that residue 1369 is in close proximity to the major MgATPase site. Therefore, we investigated the intrinsic MgATPase activity of K(ATP) channels containing these variants. Electrophysiological and biochemical techniques were used to study the MgATPase activity of recombinant human K(ATP) channels or glutathione S-transferase and NBD2 fusion proteins containing the E23/S1369 (nonrisk) or K23/A1369 (risk) variant haplotypes. K(ATP) channels containing the K23/A1369 haplotype displayed a significantly increased stimulation by guanosine triphosphate compared with the E23/S1369 haplotype (3.2- vs. 1.8-fold). This effect was dependent on the presence of the A1369 variant and was lost in the absence of Mg(2+) ions or in the presence of the MgATPase inhibitor beryllium fluoride. Direct biochemical assays also confirmed an increase in MgATPase activity in NBD2 fusion proteins containing the A1369 variant. Our findings demonstrate that the A1369 variant increases K(ATP) channel MgATPase activity, providing a plausible molecular mechanism by which the K23/A1369 haplotype increases susceptibility to T2D in humans homozygous for these variants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular determinants of ATP-sensitive potassium channel MgATPase activity: diabetes risk variants and diazoxide sensitivity

ATP-sensitive K(+) (KATP) channels play an important role in insulin secretion. KATP channels possess intrinsic MgATPase activity that is important in regulating channel activity in response to metabolic changes, although the precise structural determinants are not clearly understood. Furthermore, the sulfonylurea receptor 1 (SUR1) S1369A diabetes risk variant increases MgATPase activity, but t...

متن کامل

Coexpression of the Type 2 Diabetes Susceptibility Gene Variants KCNJ11 E23K and ABCC8 S1369A Alter the ATP and Sulfonylurea Sensitivities of the ATP-Sensitive K+ Channel

OBJECTIVE In the pancreatic beta-cell, ATP-sensitive K(+) (K(ATP)) channels couple metabolism with excitability and consist of Kir6.2 and SUR1 subunits encoded by KCNJ11 and ABCC8, respectively. Sulfonylureas, which inhibit the K(ATP) channel, are used to treat type 2 diabetes. Rare activating mutations cause neonatal diabetes, whereas the common variants, E23K in KCNJ11 and S1369A in ABCC8, ar...

متن کامل

The molecular mechanisms and pharmacotherapy of ATP-sensitive potassium channel gene mutations underlying neonatal diabetes

Neonatal diabetes mellitus (NDM) is a monogenic disorder caused by mutations in genes involved in regulation of insulin secretion from pancreatic β-cells. Mutations in the KCNJ11 and ABCC8 genes, encoding the adenosine triphosphate (ATP)-sensitive potassium (K(ATP)) channel Kir6.2 and SUR1 subunits, respectively, are found in ∼50% of NDM patients. In the pancreatic β-cell, K(ATP) channel activi...

متن کامل

Neonatal Diabetes and Congenital Hyperinsulinism Caused by Mutations in ABCC8/SUR1 are Associated with Altered and Opposite Affinities for ATP and ADP

ATP-sensitive K(+) (KATP) channels composed of potassium inward-rectifier type 6.2 and sulfonylurea receptor type 1 subunits (Kir6.2/SUR1)4 are expressed in various cells in the brain and endocrine pancreas where they couple metabolic status to membrane potential. In β-cells, increases in cytosolic [ATP/ADP]c inhibit KATP channel activity, leading to membrane depolarization and exocytosis of in...

متن کامل

Haplotype structure and genotype-phenotype correlations of the sulfonylurea receptor and the islet ATP-sensitive potassium channel gene region.

The genes for the sulfonylurea receptor (SUR1; encoded by ABCC8) and its associated islet ATP-sensitive potassium channel (Kir6.2; encoded by KCNJ11) are adjacent to one another on human chromosome 11. Multiple studies have reported association of the E23K variant of Kir6.2 with risk of type 2 diabetes. Whether and how E23K itself-or other variant(s) in either of these two closely linked genes-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 61  شماره 

صفحات  -

تاریخ انتشار 2012